Chapter 2

The Population Laws

In the preceding chapter we have studied the Mendelian
ratios among the offspring of a given type of family with respect
to one autosomal or sex-linked locus with two alleles. There
may be hundreds, thousands, or millions of families in a2 human
population. Throughout this chapter it is assumed that the
population is very large. We may raise questions such as: What
is the percentage of the three genotypes (AA, Aa, aa) in the
general population? What is the relative frequency of each of
the six types of families? To answer questions of this nature we
need, in addition to the Mendelian law, two other specifica-
lions, which refer to the population as a whole. One is the mating
nystem among individuals, and the other is gene frequency.
The autosomal genes are considered first; the sex-linked genes
nro discussed briefly toward the end of this chapter.

Random Mating

Congider an arbitrary initial population in which 50 per cent
of persons are AA, 20 per cent are Aa, and 30 per cent are aa.
"I'Nin population may be designated by (.50, .20, .30) for short.
It In nvsumed that these genotypic proportions hold for both
tmnlew and females. If men and women are married completely
al rnndom with respect to this particular locus, then the relative
frequoncy of the six types of families is given by the appropriate
tsrnm of the produet (.50 4+ .20 4 .30)(.50 + .20 + .30). To
fweiliinto the arithmetic, the product can be arranged into the
form of o multiplication table, as shown at the top of page 16,
bt 1 in unnecessary for more experienced readers to do so.
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Parents AA As aa
.50 .20 .30

AA .50 .25 ] .10 .15

Aa .20 .10

.09

as .30

s seen that among all the families in the population there are
per cent of the type AA X AA. This is also the probability
vt two random individuals will both be AA. When the relative
quencies of the mating types are determined by the (product)
obability of independent events, we say that it is a system of
ndom mating, or panmizia. It should be pointed out that the
rm random mating is a relative one. Here we mean that mating
random relative to the A, a locus under consideration such as
1e haptoglobin types, MN blood-types, and so on. At the same
ame, mating may not be random with respect to height, educa-
ion, intelligence, economic status, ete. The assumption of random
nating with respect to certain genetic factors is no contradiction
0 assortative mating with respect to certain social factors or
some other biological characteristics. »
Counting AA X aa and aa X AA as the same type, as we did
in the preceding chapter, we see that its total frequency is
15 4 15 = 30 per cent. Similarly, we pool the frequencies of
other reciprocal crosses. The six types of families and their
corresponding frequencies in the population are listed in the
left half of Table 2-1. To calculate the offspring of these families,
we apply the Mendelian laws to each type of family separately.
Thus, for the 4 per cent Aa X Aa families in the population,
34 of their offspring will be AA, 24Aa, and Y4aa. The offspring
of the entire parental population are given in the right half of
Table 2-1 in terms of relative frequencies. The next generation—
the total offspring of all families—is seen to be (.36, .48, .16).
The results obtained so far can be summarized by writing:

(.50, .20, .30) — (.36, .48, .16)

The reader at this stage may not be able to see any necessary




TABLE 2-1, 'UYPES AND I REQUNNUIND we s ssommsmme -
OFFSPRING FOR AN ARBITRARY POI‘ULA’UON (.50, 20 .30)
Pracricing PanMmixia

Parents Offspring
Type Frequency { AA Aa aa
AA X AA .25 .25 0 0
AA X An .20 .10 .10 0
Aa X Aa .04 .01 .02 .01
AA X aa .30 0 .30 0
Aa X aa 12 0 .06 .06
aa X aa .09 0 0 .09
Total........ 1.00 .36 .48 .16

relationship between the genotypic proportions of these two
generations. However, the relationship will become immediately
obvious when we consider another parameter of the population.

Gene Frequency

Although there are three genotypes in the population (.50,
.20, .30), there are only two kinds of genes, A and a; we may
ask: What proportion of the genes in the population is A and
what proportion is a? Now, the AA individuals have all A genes;
the Aa individuals have 50 per cent A genes and 50 per cent a
genes; the aa individuals have all a genes. Hence, the proportion
of genes in the population that are A and a are, respectively,

= 50 + 14(.20) = 60 ¢ = 35(.20) + .30 = .40

These are called gene frequencies. Thus, p = .60 is the frequency
of gene A, and ¢ = .40 the frequency of gene a. Generally, in a
population (D, H, R) where D + H 4+ R = 1, the gene fre-
quencies are:

=D+MH g¢=4H+R

These are, of course, also the frequencies of the A gametes and
a gametes produced by the genotypes of the populationas a whole.
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The random mating of individuals implies that any two
gametes (from opposite sexes) are united at random. If there are
p = .60 A gametes and ¢ = .40 a gametes in the population,
random union of these gametes will yield an offspring population
with:

p? = .36 AA 2pg = 48 Aa ¢ = .16 aa

as illustrated in Fig. 2-1. This explains the numerical results

pl=\.6 q=.4
4 Y v Y
A A A A A A g a o 0
A AA AA AA AA AA AA A Ac Aa Ac
A AA AA AA AA AA AA Ao Ao Ao Aa
p=6 A AA AA AA AA AA AA Aa Ao Aa Aa
A AA AA AA AA AA AA Aa Aa Ac Ac
A AA AA AA AA AA AA Aa Ao Aa Aa
A AA AA AA AA AA AA Ao Ac Ao Aa
a aA oA cA oA oA A QG ag aa ao
=4 a ahA aA dcA oA oA cA oa €a ag aa
“Ja aA oA oA GA oA ¢A o ce @@ aa
a 6A oA aA oA dA cA ga oo @a aqa

Fic. 2-1. The gene frequencies and equilibrium proportions of the three
genotypes in a random-mating population.

obtained in the preceding section. It follows that the three
initial genotypic proportions (.50, .20, .30) have no particular
significance in a random-mating population except for their role
in determining the gene frequencies p = .60 and ¢ = .40. Any
other initial population with the same gene frequency will yield
the same offspring population on random mating. The reader
may spend a few minutes to satisfy himself by showing that the
initial population (.30, .60, .10) on random mating will yield
the same (.36, .48, .16) offspring population.

An important principle is established in this section, viz., the
random mating of individuals is equivalent to the random union of
gametes. This principle will be employed many times in later
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chapters in dealing with more complicated situations in which s
longhand enumeration of all the possible types of mating is very
tedious. :

Equilibrium Condition

The immediate next question is: What will be the composition
of the offspring generation of the parental population

(p% 2pyg, ¢*) = (.36, 48, .16)

if random mating continues? Applying the principle just estab-
lished above, we obtain the gene or gamete frequencies:

p = .36 + 15(48) = .60 q = 35(48) + .16 = 40

Random union of these gametes will yield an offspring population
(.36, .48, .16) again. This shows that the population will remain
the same in the absence of other disturbing factors. Such a
population is said to be #n equilibrium. This law was established
independently by Hardy and Weinberg in the same year (1908)
and hence is known as the Hardy-Weinberg law of equilibrium
(see Stern, 1943).

Although the equilibrium has been established by a short cut,
it is much more satisfying to demonstrate it by the long method,
as shown in Table 2-2. In addition, we shall need all the details
in the table for later discussions. This table is constructed
exactly the same way as before, only replacing the arbitrary
population by the one in equilibrium. For instance, the fre-
quency of parental mating types is obtained from the terms of
(p?AA + 2pgAa + g¢%aa)? = (36AA + .48Aa - .16aa)% We see
that the parental population (p? 2pq, ¢?) yields an offspring
population of exactly the same composition.

Whatever the initial genotypic proportion, the equilibrium con-
dition (p?, 2pq, ¢ will be reached in one single generation of
random mating and will remain so on continued random mating.
It is due to this simple theorem that we may safely take a human
population to be in equilibrium with respect to one autosomal
locus in practical research.

Comparing Table 2-2 in this section with Table 1-1 on family
laws, we see that the chief difference is that in the present case
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there is the extra column for ‘frequency of mating.”” Wo may
think of the frequency of mating as “woight’’ for the varlous
types of families. Thon, the total offspring of the six typon of
families, properly weighted, is (p?% 2pq, ¢%).

TasLe 2-2. MaTiNGs AND OFFsPRING IN A LARGE RANDOM-MATING
PorurLaTioN WITH GENE FREQUENCIES p == .60 AND g = .40

Offsprin
Type of mating Frequency epring
ther X fathe: of matin,

(mother X father) f mating AA An na
AA X AA pt = .1296/ p* = .1296 0 0
AA X As 2piq = .1728] p%g = .0864| p?¢ = .0864 0
AA X aa p*¢® = .0676 0 p*g? = .0576 0

Aa X AA 2p% = .1728| p?q = .0864] p?g = .0864 0
Aa X As 4p2g® = .2304|p%? = .0576/2p%* = .1152|p%® = 0570

Aa X aa 2pg® = 0768 0 pg® = 0384 pg® = .0384
aa X AA pig® = .0576 0 pg? = 0576 0

as X Aa 2pg® = .0768 0 pg® = .0384] pg® = .0384
aa X aa ¢t = ,0256 0 0 ¢* = .0256

Reciprocals combined (Weinberg, 1908)

<
<

AA X AA pt= .1206| p* = .1296
AA X Asa 4p?q = .3456(2p%q = .1728] 2p¥q = .1728 0
Aa X Aa 4dp2g? = .2304|p%q? = .05762p%¢* = .1152 p%g® = .0576

i

AA X aa 2p%g? = .1152 0 2p%g® = .1152 0

Aa X aa 4pg® = .1536 0 2pg® = .0768|2pg® = .0768

aa X aa gt = .0256 0 0 q* = 0256
Total............ 1.0000{ p? = .3600| 2pg = .4800{ ¢* = .1600

Now let us consider the ¢2, or the 16 per cent aa individuals
in the general population. From the last column of Table 2-2,
we see that they come from three types of families. The per-
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from cuch type Is as follows:

19 0570
, Aa X An: pq? - “ado = 36% = p*
o A 2p¢* 0768
m X an -_Z.g_. == m‘?zba = 48% o 2pq

, ¢ 0256
Prom nu X na: g§=m=l6%=q2

Note thut these percentages are identical with the genotypic
portions in the general population. Of course, this result may
} soon directly (without referring to the table) by considering
$he probabilities. An aa individual implies that each parent has
. 2t loast one a gene. These parents may thus be designated as
I Xa X Xa, where X is the undetermined gene. The probability
i that both Xs are A is p?; that one is A and one is a is 2pg; and
| that both are a is ¢%.
. ©bservational Verification
Before proceeding with the subject, let us look at some observed
data to show that the Hardy-Weinberg law does actually hold

{n human populations.
The MN blood typing in man is a very familiar case in which

3t

; Ml the three genotypes are distinguishable. Numerous published
*  data from all parts of the world could be cited as examples; the

. [following one has been chosen because it involves large numbers
; from a single community, and, as will be seen later, it also gives
the frequency of the types of matings. Matsunaga and Itoh
i (1958) reported the following findings from the mining town

Genotype Observed | Gene ff'equency Ea:pectc.zd Ezpected
number (estimate) proporiion number
MM 406 .2756 408.44
} p = .525
MN 744 .4988 739.22
} q = .475
NN 332 .2256 334.34
Total... .| G = 1,482 1.000 1.0000 1,482.00
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Ashibotsu in Hokkaido, Japan: When all three gonotypos nre
distinguishable, a sample of G' = 1,482 persons from n random.-
mating population is equivalent to a sample of 2G¢ = 2,004 gonon.
Each of 406 MM individuals, traditionally referred to us M indi ,
viduals, hasitwo M genes, whereas each of the 744 MN individunin i
has one M gene. Hence, there are 2(406) -+ 744 = 1,556 M genon i
among a total of 2,964. The frequency of the M gene is then |
1,556/2,964 = .525 = p, and that of the N gene is .

1— 525 = 475 = ¢

This is not the true (but unknown) gene frequency of the Ashi-
betsu population but the estimate of it based on the observed T
sample. In statistical literature the sample estimate is written \
as p or some other symbol to be distinguished from the truc
value (parameter). We shall not go too much into the sampling
theory, and it is not necessary to use a new symbol. It is always
understood that anything calculated from the sample is a sample
estimate and is subject to sampling error.

The expected proportions of the three genotypes are the terms
of (p+ ¢)? = (525 + .475)? in accordance with the Hardy- ’
Weinberg law. Multiplying these expected proportions by
G = 1,482, we obtain the expected numbers. It is seen that these
expected numbers agree very well with those observed. The
“goodness of fit”’ may be tested by the usual chi-square method.
The value of x? in this sample is 0.06 with one degree of freedom,
showing a very insignificant deviation (that is, good fit) between
the observed and expected numbers.

The sampling estimate (p = .525 for this particular sample)
varies from sample to sample. If another sample were taken from
Ashibetsu, the p value would be somewhat different from .525.
The sampling variance of p or ¢ is: ‘

pq _ 525 X A75

Vo) = V(9 = 55 = —5(ragg) ~ 000084

and the standard error of p or ¢ is the square root of the variance:

s(p) = s(g) = +/.000084 = .0092
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Tho 1,482 persons above netually consist of 741-couples. Tho
alx muting typos and their numbers are as follows:

Mating type | Observed number | Expecled proportion | Exzpected number

MM X MM 58 p* = .0760 56.3

MM X MN 202 dpiq = .2749 203.7

MN X MN 190 4ptgt = 2487 184.3

MM X NN 88 2piqt = 1244 92.2

MN X NN 162 4pg* = 2251 166.8

NN X NN 41 ¢t = .0509 37.7
Total.......... 741 1.00 741.0

In calculating the expected proportions for the various types of
mating, the value p = .525 is employed. The expected and
observed number of the mating types agree very well, and there
is little doubt that the population is panmictic with respect to
the genetic factors M, N. This furnishes us an observational proof
of the general validity of the assumption of random mating and
equilibrium,

Sex-linked Genes

The original Hardy-Weinberg law for a large random-mating
population is established for autosomal genes only, but it also
applies with slight modification to sex-linked genes when the
population 1s in equilibrium state. The equilibrium state occurs
when among females the genotypic proportions are p? 2pq, ¢*
as in the autosomal situation and among the males the propor-
tions are simply p, ¢. This is demonstrated in Table 2-3, in which,
for the sake of omitting the constant factor 34, the daughters and
sons are listed as two separate populations of offspring; in
each population the proportions add up to unity.

Several observations may be made on the equilibrium condi-
tion. Each female has two X-chromosomes, and each male has
only one. If there are equal numbers of both sexes in the popula-
tion, then 24 of the sex-linked genes are in the female population
and 14 in the male population. However, the gene frequencies
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in the two soxos aro oqual, both baing p and ¢. Thin Ix an ossontisl
condition for equilibrium,

The proportion of males that posscsses s sox-linkod tealt, in
always greater than the proportion of females that is homozygoun
for the locus. For instance, if ¢ = {9 = 8.33 per conl of the

TasLe 2-3. EqQuiriBRIuM CONDITION FOR SEX-LINKED GUNLK IN A
LARGE RANDOM-MATING PoOPULATION

Daughiers Sons
Mother  Father i;erqnl:;?:y
7 AA Aa a8 A- 0

AA X A p? p? - s p?

Aa X A 2p%q P'q P’q .- r'e %

as X A pg* e g .- . pq?

AA X a P e P .. pq

As X s 2pq? ... gt et g gt

aa X a i cee e ¢ - q®

Total.............. 1.00 p2 2pq ¢ P q

males are color-blind, then the proportion of color-blind females
is only ¢* = }{44 = 0.69 per cent, less than 7{o of 1 per cent.
This explains why there are so few color-blind females in com-
parison with males. The smaller the value of ¢, the greater
the departure between female and male proportions. Hemo-
philia is much rarer than color blindness, so hemophiliac
females must be very rare indeed. In addition to the ¢ and ¢*
relationship, there might be other factors affecting the incidence
of female hemophiliacs. So far, only a paumty of cases has been
reported. :

The Approach to Equilibrium

With respect to an autosomal locus, equilibrium condition is
reached in one generation of random mating. Because of the
asymmetry in the two sexes, equilibrium is in general not reached
in-one generation of random mating for a sex-linked locus, except
in special cases, but is approached very rapidly in successive



prations of random mating. The dotalls have been glven else-
Bere (LI, 10560), and only a brief montion of the main fontures
J the convorging process in given here.
B! Buppowe that among femalo parents the gene frequency is
yx = .32 and that among male parents ¢x = .56. The genotype
§ the wons is entirely determined by that of mothers and has
‘Bothing to do with the fathers. Hence the gene frequency among
$he vonw will be the same (i.e., .32) as that among the mothers.
A deughter’s genotype is determined half by the mother and
half by the father; therefore the gene frequency among the
daughtors is the average of their parental gene frequencies, that
T, 14(.32 + .56) = .44. Continuing this process, we obtain the
Following results:

‘Qoneration Females Males Difference  Pooled frequency
t gxx ax gxx — gx § = (2gxx + ¢x)/3
0 .32 .56 —-.24 .40 7
1 ;1’4 ><.32 +.12 .40
2 ?:lé ><.44 - .06 .40
3 4:1!:1 §.38 +.03 ; .40
.40 .40 0 .40

We see that each male gene frequency is equal to the female gene
frequency of the previous generation and each female gene
frequency is the average of two parental gene frequencies. The
absolute difference between the female and male gene frequencies
is halved in each generation. The shuffling of genes from one sex
to another does not change the average or pooled gene frequency
of the two sexes, as shown in the last column. In the equilibrium
state, the gene frequency is equal to § in both sexes. In practice,
it is safe to take a human population as in equilibrium, except
in a newly intermixed race.
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APPENDIX ON ALGEBRAIC SIMPLIFICATIONS

Those who have no occasion to use algebra tend to forgot the
elementary manpipulations they learned many years ago. Thin
appendix serves to review some of the relations encountorod
frequently in the rest of the book, so that they need not hlock
the reader when he sees them. One identity that the reader must
be familiar with is:

(a +b){a —b) = a2 — b

This we shall use very often.”

First, consider the linear expressions. If p and g are two positive
fractions and p + ¢ = 1, we may draw a straight line of unit
length and divide it into two parts, one of length p and the other
of length ¢, so a linear expression can always be thought.of as a
length.

p=1-—¢q g=1-—7p
p+2=14+¢=2—-p 3+g=4-1p,
pP—g=1-2¢=—2(q— %)

Next, consider expressions involving the second power. Many
of the following expressions may be seen by drawing a wunti
square with each side divided into p and ¢, so the unit area is
1=19p"+2pg+ ¢ Thus (p +¢) X ¢=1Xg¢g= g stands for
the area of a rectangle of unit length and ¢ width.

pg=q(1 —¢q) =pl—p)=¢q—g=p—p°
P*+pg=pp+q =p similardy, ¢+ pg=¢
PP+2pg=1-¢ =(@1A-q0+¢g =pp+2)
=p(2 - p) =p(l+¢ =p+pg
P-C=@+tdP-ad=p—qg=1—2
In certain types of problems we encounter expressions involving
the third power:
p*+ 9’ = p’(p + ¢) = p*
P’ + g = pe(p + @) = pg
In dealing with mating types, expressions involving the fourth
power come up very often. Usually there is more than one way of
simplifying such expressions.




o Gpgt + ¢ = @' (PP + 200+ ¢") =g
W dp'g + 4p'g* = (p* + 2pg)* - (1 — g%
\ - pi(p? + 4pg + 4¢*) = p'(p + 2¢)*

= p¥1 + ¢)?
gt + pg* + Yp'e* = Yig*(l + 9)?

jally, expressions may involve quantities other than p and
 ¢ho following, s is a positive fraction.

q(l - 8) - Q(l - sq) = - 8pq
P + 2pg(1 — 8) + ¢*(1 — 9)* = (1 — s9)*
pg(1 — 8) + ¢*(1 — 8)* = ¢(1 — 8)(1 — )

bose few examples must suffice. After a certain amount of
#loe, the reader should be able to simplify similar expressions
Jout difficulty. The meaning of an expression often gives a
B ‘aa to how it should be simplified.




