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Analysis of variation in gene frequencies within an area may have sev-
eral purposes, and much of the ongoing disagreement about methodology
in human population genetics may reflect as much a lack of clear percep-
tion of the purposes of the methodology as it does real conflict over
substantive thearetical issues. A method of analysis should be directed
toward answering questions, and these questions should be explicit.
There are two broad and overlapping areas of inquiry for which studies
of regional gene frequency variation are pertinent. One is population
structure—the study of the effects of internal migration, group composi-
tion, mating practices, and other factors on the amount and pattern of
genetic drift within an area. The second is really population history. Here,
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CHAPTER 9

the questions concern the degree of similarity among populations, where
similarity may reflect either common ancestry or mate exchange. These
two aspects of genetic similarity are ordinarily inscparable.

Studies of population structure typically focus on small and/or homoge-
ncous areas. Under the assumption that the study population is near
“equilibrium,” that is, that a stationary distribution of gene frequencies
has been reached, variation in gene frequencics or genotype frequencies
is compared with predictions made by considering various demographic
parameters of the population. Each marker locus yields a measurc of the
amount of drift. This measure is either Wahlund’s coefficient of inbreed-
ing (Fgp in Workman and Niswander [1970], Fy In Cavalli-Sforza
[196gb], F in Harpending and Jenkins [1g72b]), or the genotypic disequi-
librium inbreeding cocfhicient of Li and Horvitz (1953) (Frr in Work-
man and Niswander [1970], « in Yasuda [1968b] and Morton et al.
[1971¢]}. In addition, the form of the regression or normalized genetic
covariance—r in Harpending and Jenkins {1g72b}, y(d) in Morton et al.
(1971¢c)—is of interest, although it now scems that this regression is pri-
marily a function of sample size, distribution, and the local inbreeding
coefficient, rather than a function of the underlying population structure.
This biological measurc of drift is compared with predictions from any or
all of the following demographic items: pedigrees, isonymy, the root mean
square distance between birthplaces of parents or between parents and
offspring (Malécot 1948, Azevédo et al. 1969}, a matrix of frequencies of
gene exchange among areas or villages (Bodmer and Cavalli-Sforza 1968,
Smith 1969, Morton 1969, Fricdlaender 1971a, Harpending and Jenkins
1972b), and local effective population sizc.

Evaluation of the amount of concordance between predictions from
demography and observed marker genc frequency variation has been
equivocal, because of uncertainty about what constitutes reasonable
agrecment, and because of uncertainty in the interpretation of the pre-
dictive models. For example, Friedlaender (1g71a) and Morton et al.
(1971c) assume that inbreeding statistics given by the migration matrix
modct should correspond to Wahlund F statistics, while Harpending and
Jenkins (197zb) modify their results to account for finite sample size. The
diffcrence between the corrected and uncorrected predictions is very large.
As this approach is refined and applied to diversc groups it may lead to
inferences about selection at loci which deviate significantly from
predictions,
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The second, or historical, approach to studying genc frequency vari-
ation has been applied to populations of all sizes from single tribes { Ward
and Neel 197ca) to the whole world (Cavalli-Sforza and Edwards 1967).
In these studies, group gene frequencies are converted into genetic “dis-
tances” among groups, and these elistances are used to make a “genetic
map” (Sanghvi, Kirk, and Balakrishnan 1971) or a cladogram, both of
which provide a visible if anecdotal summary of the intergroup differences.
This summary diagram 1s then compared intuitively with knowledge of
mating patterns, ancestry, linguistic relationships, or other heuristic indi-
cators of similarities among the groups.

There are many measures of genetic distance, all of which are reason-
able. They are all related to one another, and nene is likely to seriously
mislead an investigator. Consideration of the notion of genetic similarity
should, however, lead to some measure that has specifiable advantages.
These may be that it lend itself equally well to the construction of clado-
grams and to the construction of genetic maps and that it be clearly
related to genetic theory—that is, that it have more than anecdotal
interpretation.

The genetic distance between two groups should be small if their gene
frequencies are similar. There are a number of reasons why two groups
should have similar gene frequencies, the more conspicuous of which are:
(1) they shared a recent common ancestor; (2) they exchange genes; (3)
they are large, so that little drift has occurred since their separation; and
(4) their loci are or have been subject to similar selection pressure. Of
these, the third reason is often overlooked. Since drift of mean gene fre-
quencies of a subdivided group is nearly independent of mating patterns
within the group (Ewens 196¢), consideration of sizc makes reasonable
the finding, for example, that genetic distances between villages within
American Indian linguistic groups are as large as distances between lin-
guistic groups.

‘The fourth cause of similar gene frequencies (similar selection histories
of populations) is, in practice, not often cited to explain the results of
studies, Many studies of genetic distance are of restricted homogeneous
areas where there is no reason to suspect heterogeneity in selection pres-
sures. Other selection environments, such as homogeneous selection over
an area or random changes in the magnitude and intensity of directional
selection, will not, in effect, be very different from drift. For these reasons
and for others discussed in Cavalli-Sforza (1969), selection is usually not
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CHAPTER g

explicitly considered in studies of genetic distance, in which genetic drift
is the presumed agent responsible for observed gene frequency differentia-
tion. Within small areas, many kinds of selection would have little effect
on the differentiation caused by drift, and even regional heterogeneity
would be swamped by drift and migration unless it was very strong,

Genetic drift is described by kinship statistics, and thesc should be the
basis of measures of genetic distance. The coefficient of kinship between
two groups that are labeled i and j is written fi; (or ¢,y in Morton et al.
[1971¢] and Harpending and Jenkins [1972b]). This cocfhicient has two
interpretations that are often used interchangeably: (1) the probahility
that a random allele at a specified locus in population i is identical by
descent to a random allele from the same locus in population 7 is fij;
(2) the populations are undergoing genetic drift. There is some gene
frequency P that is either the initial gene frequency before drift or else
the gene frequency toward which systematic pressure is directing the fre-
quencies in groups  and j. Then, f,; is the normalized covariance between
gene frequencies of any allele described by the model, that is,

_ [ - P)(p, - P)
o= E[ P -
where p; and p, are the gene frequencies in groups 7 and j, and E(*) means
expectation or average value of the term on which it operates.

The first definition of f;; is applicable to individuals as well as to groups,
and i may be the same or different from j. When i is the same as i, the
second definition is a form of Wahlund’s principle (Li 1955), and it also
is applicable, with slight modification, to individuals as well as to groups
{(Harpending and Jenkins 1972b).

The second definition of the coefficient of kinship immediatcly suggests
that a reasonable measure of genetic distance is

Ay = fu+ fi — 2y
This is simply the squared Euclidean distance between populations iand

j in a hyperspace whose axes are allelic frequencies scaled by dividing by
the normalizing factor\/[P(1 — P)] as is appropriate for genetic drift.

COMPUTATION

The obscrved or sample cocfficient of kinship between groups i and § 15
given as
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. _ (P :F) (Py — P)

P(1-P)

for any allele. (Morton ct al. {1971c] use y instead of r for a similar coefh-
cient.) In this expression, P is thg weighted mean gene frequency of the
allele in the study array; it provides an estimate of the “underlying” mcan
gene frequency P. The matrix of sample kinship coefficients is calculated
for each allele, and these matrices are averaged to yield one overall matrix
of sample cocflicients. If all the alleles studied are subject to genetic drift
with the same systematic pressure (imagined to be immigration from the
outside wotld ), then all alleles should give estimates of the same “true” r
coefficients, subject only to chance deviations. Hence, Harpending and
Jenkins (1972b) simply averaged the r matrices from all alleles they
studied. It is probably better to give unequal weight to allcles by weighting
estimates from different loci by the degrees of freedom at the locus, as
when genetic distance is calculated as a chi-squared statistic. Morton et
al. (1971¢) propose a weighting method that depends on their own special
programs but that may be a better way to reconcile the following kinds of
consideration: (1) loci without dominant alleles are much more informa-
tive and should be given greater weight than loci like ABO, where much
of the gene frequency variation may reflect estimation error; and (2) com-
mon alleles are more informative than rare alleles whose frequencies are
much more subject to sampling error. For samples of the size common in
anthropological studies, the difference between the gene frequencies of
0.3 and 0.4 is meaningful, while the difference between 0.03 and 0.04 is
not. Whatever the method used to combine information from the various
loci, the resulting matrix of sample relationship coefficient 7 is then
amenable to analysis in several ways; one may make a “tree”’ or one may
examine its principle axes and make a “map.”

TREES

Harpending and Jenkins (1g72b) suggest that the expected or average
value of a sample relationship coefficient is

futf—F—1

E(ry} == 177
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CHAFPTER Q

Here, § is random kinship within the sample. Writing w; as the proportion
of the total sample that is the ith population (w; = Ni/ 37N, where N re-
k

fers to census and not sample sizes), random kinship is
f= 2 wiwifi.
i

This is interpretable as the probability of identity by descent of two ran-

dom alleles from the same locus or as a measure of the drift of sample
mean gene frequencies p away from the prior mean P, that is,

- olftr=r]

Similarly £, is the random kinship of population i, that is,
fo= 2 Wiy
J

This is interpretable as the probability of identity by descent of a random
allele from population i with a random allele from anywhere in the sample
or, alternatively, as a measure of the similarity of the gene frequencies
of population i to the sample mean gene frequencies. If no population is
much more isolated than the others, it measures the relative size of pop-
ulation i.

The sample relationship coefficients then give a measure of distance
between populations i and § as

dﬁ =7yt L7 2?’{,‘.
This measure has expected value

futfus—2fy Ay
Edy)y="7_"3 ~1.%

which is the measure of distance suggested above, apart from the constant
(1 — f) in the denominator. Note that the circulation of this distance
measure is like the calculation of a chisquared statistic. With the sum-
mation referring to summation over all alleles,

e 1 ' — P2 A2 —h — A
di,-—z(ﬁ(l—_?))l(pa B)2+ (b — B — 2(pi— B) (b5 — P)]

- E(Pé - pi)®

p 1
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since 3 p is an integer equal to the number of loci. However, it is pref-
erable to compute first the matrix of kinship coefficients, because this
matrix gives Wahlund F as the average diagonal element and because the
eigenvectors of this matrix give a “genetic map” of the sample.

There are many routines that cenvert a table of distances into dendro-
grams or trees. Attempts to justify any particular routine as superior to
others because of its “reconstruction” of evolution seem unsatisfactory
and inapplicable to interbreeding human populations. We prefer a simple
“maximum-linkage” technique, which is economical of computer time
(Jenkins et al. 1971). The trees given by various techniques are usually
similar in broad outline but differ in detail. It is difficult to evaluate or to
say anything meaningful about differences among trees. Figure 27 shows
trees produced from our material (see below) by the maximum and mini-
mum linkage techniques (Jenkins et al. 197 }.

MAPS

Much more satisfactory visual aids for the interpretation of genetic
distances are provided by genetic maps (Morton et al. 1g71¢). A genetic
map is simply the result of a principal components analysis of the kinship
matrix. T'o do this, we transform gene frequencies into new, imaginary
gene frequencies (more precisely, imaginary scaled deviations from the
sample mean) that have the following properties: (1) a population’s fre-
quency of any of the imaginary genes has no relationship to its frequency
on any of the others, that is, the gene frequencies are uncorrelated; and
(2) the variability of the imaginary gene frequencies among the popula-
tions may be ranked in descending order, so that a plot of the populations
on axes representing the two or three most variable genes gives a good
picture of the biological relationships or distances among the populations.

For convenience, we work with three alleles, which may or may not be
at the same locus, in three populations, but the procedure is perfectly
general. We write, p, g, and r for the gene frequencies and label the pop-
ulations with subscripts i, j, and k. Then, the kinship matrix is, apart from
a scalar divisor (that is, three, because there are three alleles pooled) :
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where, for example,

(b= p)? n (g —q)° + (re—1)°

MR- R) - q)  r1-7)
=(Pi:5)(Px_—5)+(Qtta)(qi—6)+(hj;)("r_—;)
p(l—p) g(l— g} {1l —r)
Fop = (Pf—5)2+ (q:'"‘_i’)2+ (TJ“?V_

pL—p) ql—q) r(1—7)

This may be written as the product of a matrix and its transpose:

(P« —P) (s —q) (re—7)

V(I —p) V4(l—gq) vr(l1—-7)

R = (pi —P) (95— q) (r;— 1)
Vel —p) Vel —q) Vi(l-—T)

(bx — P) (g» — q) (re —7)
VAL —p) Vg(l—4q) Vvi(l-—7)

(pi — P} (s — P} (px — P)
VP(1=p) VB(l—p) VP(1—p)
(g — §) {3: —9q) (gx - §)
Val—g) Va(l—-g) Vgl —3g)
(r, — 7) (r; —7) (e —7)

- VIO —7) VF1-7) Al —7)

-
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FIGURE 27. Maximum {top} and minimum (bottom) linkage X 2 distances.

A

Bantu

0.0356
8.030
0.025
0.020
0.015
n.010
0.005
0.080
0.10
0.09
o.08
0.07
0.06
0.0§
0.04
0.03
p.02
0.01
0.00




CHAPTER g

For future reference, we call the matrices on the right of this equation
Zand Z% so R = 277,
We writc our new, imaginary gene frequencics for population 7 as
eV A, 921\/?2, em\/'\—a-
The reasons for this notation will be apparent. We wish our new frequen-
cles to reconstruct the original kinship matrix R, that is,

911\/5\—1 6’25\/& eas\/h—s .@u\/z 91,-\/;\-; elk\/)\-—l
R= elf\/xi ezj\/)\_z eaj\/rg em\/X; 32,’\/'\—2 ezk\/g
eu—\/x ezk\/)\—z eak\/X:; em\/)\_s 931'\/)—\; ‘331:\/7\_3
Write E as a matrix consisting of the column vectors e; -, es_, es_, and
scale these vectors so that the sum of squares of their clements is one and

the magnitudes of the X’s express the variability of the new gene frequen-
cies; then the previous matrix equality may be written

€17 €3 €y M OO €14 €15 €1
R = €1j Bzy Gy 0 A2 0 €y €u; Eop
€1y €2p €5y 0 0 Ay €3y €35 €xx
or
R = EAET,

where A is a diagonal matrix with elements A, Az, As.

Since the matrix R was written originally as the product of a matrix
and its transpose, it is symmetric and positive semidefinite, The matrix E
and numbers A arc the eigenvectors and cigenvalues of R. A discus-
sion of the algebra of eigenvectors and eigenvalues as used here may be
found in Tatsucka (1971). Because R is symmetric, the matrix E is ortho-
gonal, that is, EE” = I, or, in our terms, the imaginary gene frequencies
arc uncorrelated. Further, since R is positive semidefinite, the eigenvalues
are all greater than or equal to zero. At least one will be zero, because k
populations occupy a space of k — 1 or fewer dimensions, and several
more may be zero if fewer independent alleles than populations are
studied.

If the eigenvalues and their associated vectors are arranged and la-
beled in descending order of magnitude, the imaginary gene frequencies
2w/ Ay, €17/ A1, en/A will array the populations along an axis, a rota-

‘Eion of the original gene frequency axes, along which the dispersion
is maximized. The second set of imaginary frequencics, ezi\/Az, €2\ Az,
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eau\/ Az, gives a second axis at right angles to the first, along which disper-
sion is again maximized, after the variation accounted for by the first
axis has been removed. The first two or three axes found in this way then
provide the “best” reduced dimension picture of the “distance” relations
among the groups. -

Several remarks concerning the relation of this procedure to ordinary
principal components analysis arc in order. In many studies, when the
positions of objects on component axes are shown, the cigenvectors them-
selves are plotted, rather than the eigenvectors muitiplied by the square
oot of the corresponding eigenvalue. Since the cigenvectors are scaled so
that the sum of their squared elements is equal to one, the plots appear
spherical; this may be misleading if the eigenvalues—the magnitudes of
dispersion along the corresponding axes—are very different.

Principal components analysis is widely msed to array objects in a new
space when these objects have been measured on a number of metric
traits. Often the reduced-space representation is very satisfactory, since
much of the variation can be accounted for by a few components, usually
identifiable as size, robusticity, linearity, and so forth. When this method
of analysis is used in this population-genetic context, there is no reason
to expect that a small number of new variables will account for the rela-
tions among the groups in a satisfactory manner, since under pure drift,
no locus should be correlated in any way with any other locus. This
method should be valuable, on the other hand, in identifying clusters of
related groups, since relatedness should be the only factor introducing
correlations among groups. In morphometric studies, items like total size
seem to become confounded with relatedness.

In morphometric studies, a decision must be made whether to find
components of the correlation matrix, which gives all variables equal
weight, or of the covariance matrix, which weights variables by their mag-
nitude. Here, gene frequency covariances are divided by the scaling factor
p(1 — p) derived from genetic drift theory. This may not be the most
appropriate procedure if the object is discrimination, but it has the advan-
tage that it articulates distance analysis with genetic theory and that it
provides a map optimally corresponding to the population structure that
determines drift.

Finally, in ordinary components analysis, a covariance or correlation
matrix among the variables is computed, the cigenvalues and eigenvectors
determined, and the component scores (our imaginary gene frequencies)
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determined by multiplving the cigenvectors by the variable valucs for each
object. The procedurce described here is a shorteut and offers further ad-
vantage of vielding a distance matrix (if desired ) and population structure
statistics along the way. It is particularly useful, and cconomical of com-
puting cffort, when many more alleles than populations are studicd.

PLOTTING ALLELES

It will usuallv be of considerable interest to go back and lock at the
rclations among the alleles as well as among the populations. Coordinates
for alleles along imaginary axes of greatest variation may be obtained from
the eigenvectors of the matrix R by simple matrix multiplication; these
coordinates wilt be cigenvectors of the scaled matrix of covariances among
allele frequencies, which we write S.

The matrix 7 dchned on p. 186 of scaled data values will have k rows
and p columns, where p is the number of alleles and %k is the num-
ber of populations under study. Apart from scalar divisors, the k by &
matrix R is equal to Z postmultiplied by its transpose, while the p by p
matrix S is equal to Z premultiplied by its transposc. If k is much smaller
than p, that is, if there are many more allcles than populations, there are,
at most, k eigenvectors of R, imaginary gene frequencies along which the
populations are arrayed. These will always be sufhicient to reconstruct the
kinship or distance matrices, since k populations occupy a hyperspace of,
atmost, k — 1 dimensions. For example, in the three-population example,
no matter how many alleles are studied, thrce populations define a two
dimensional space, and distances between them may be drawn exactly in
two dimensions. In general, the dimension of the space occupied by k
populations defined on p allele frequencies is the minimum of k -- 1 and
p, so that cither the S or R matrix contains all the information availablc
about kinship and genetic distance. If, as in this study, k is much smaller
than p, it is much more convenient to work with the matrix R. If, on the
other hand, p ts much smaller than k, it is convenient to work with the
scaled covariance matrix among alleles §.

The important algebraic result that allows the use of either matrix
for this analysis is that S and R have exactly the same set of nonzero
eigenvalues. 'T'his means that the dimensions of the space in which the
populations are located are exactly the same, whether we imagine popula-
“Mations as points on axes corresponding to gene frequencies, or whether we
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imagine genc frequencies as points on axes corresponding to populations.
Further, the eigenvectors of one are given by multiplying the correspond-
ing cigenvectors of the other by the scaled data matrix 7 (Dempster 196g).
In matrix notation, let the number of nonzero cigenvalues of § and R
be 1. Then the I by p matrix of effenvectors of S is given by the product
of the I by k matrix of eigenvectors of R postmultiplied by the k by p
matrix of scaled data Z. In gencral these will have to be rescaled. Then,
the p-clement eigenvectors of S corresponding to the first few largest
eigenvalues give an optimum graphic portrayal of the correlations among
the alleles and of their contributions to genctic distances along the corre-
sponding axes.

NUMERICAL EXAMPLE

A numerical example of this procedure using three populations and
three gene frequencies may clarify the meaning of the operations. Let
populations I, J, and K have gene frequencics p, g, and r as follows:

I j K
p 04 08 06 p=06  p(l—p) =024
g 05 02 08 g=205 g(l—gq) =025
r 05 05 08 r=06 7

First, the kinship matrices are formed for each allele, as

017 —-0.17 (.00 0.00 0.00 (.00
R, = —0.17 017 000 R,=0.00 ®36 —0.36
0.00 0.00 0.00 000 -036 036

0.04 0.04 —0.08
R,= 004 004 —008
—0.08 -—0.08 0.16,

and averaged:
007 —0.04 -—0.03
R=-004 019 015
—003 015 018

Inspection of this matrix shows that the average diagonal element,
Wahlund F, is 0.15, which is of the order of those found for comparisons
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among major racial groups. Second, the inbreeding coefficient of the first Now, to obtain graphic representation of the relations among the

population (ry() is small, implying that it is ncarest the center of the - alleles, we obtain the eigenvectors of S from those of R.
swarm. '1'hird, the sum of any row or column is zero. In general, it is true

that sample random kinship = Sw.w;ry;, or random kinship of subpopu- (0%/0:_7,0_6) 0 M)
- i 24 - 0.24
lation j, r; = Swyry, 1s zero. This corresponds to the intuitive notion that M
2 Z=1 (08-106) (0.2 - 0.5) (05-06) |,
the correlation between two random populations is zero, since correlation \/0.24 V0.25 V024
is calculated from observed sample mean gene frequencies. '
The eigenvectors and cigenvalues of this matrix are: 0 (08 —05) (08 _"_9'6)
0.25 0.24
1\1 = 034 €1y — —0.03 2y = 072 e — —0.69 \/ \/
Ag = 0.10 Ea; = 0.82 €a; — _0.38 Eap = *0.43 _0.03 0.72 _069
Az = 0.00 — — — ET = 082 —0.38 —043],
The sumn of the cigenvalues, ©.44, is the sum of the diagonal elements of and o e
the original matrix. The cigenvalues measure the dispersion along the new b q ;
axes; the total dispersion is preserved under the rotation and new represen- 030 —0.85 0.42
tation and given by the sum of the eigenvalues. The third eigenvalue is o 0'1 6 0 , : 0' 24

zero, implying that the three populations occupy a space of only two di-
mensions, as is obvious. The two eigenvectors corresponding to the two
positive cigenvalues are natural coordinate systems for showing the rela-
tions among the groups. The squares of the elements of each vector sum
to one, so the dispersion along cach axis will be the same if the vectors are
plotted. More naturally, each vector should be multiplied by the square
root of its eigenvaluc to show “true” relations (Figure 28).

approximately, The rows of ETZ are eigenvectors corresponding to the
two nonzero cigenvalues of the scaled covariance matrix among alleles
given by § = ZTZ, apart from some scalar row multipliers to make the
sum of squares of each vector equal to unity. These relations are shown
in Figure 29. The axes are the same in Figures 28 and 29 and reveal im-
mediately, for example, that allele ¢ contains no information for telling

FIGURE 28. Distance relations among three hypothetical populations. population I from J and K, or that allele q is very low in population .

FIGURE, 29. Relations among alleles.
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ANALYSIS OF SOUTIHERN AFRICAN DATA

We have applicd these techniques to data on 15 marker loci from 18
populations in South Africa (Jenkins, Zoutendyk, and Steinberg 1970,
Jenkins ct al. 1971, Jenkins and Steinberg, unpublished data ). These pub-
lications will present the results of the various genetic analyses in detail.

The populations studicd fall into four main subdivisions; San, Khoi,
Bantn, and Colored. W use the new terminology of San for “Bushman”
and Khoi for “Hottentot.” The provenance of the samples from the
Bantu-speaking peoples has been given in Jenkins, Zoutendyk, and Stein-
berg (1970), except for the Herero sample, which was collected by Har-
pending during ficldwork in northwest Botswana with 'Kung San. The
samples from (Kung, Naron, the three groups from Scsfontein, south-
west Africa (Damara, Sesfontein Colored, and Khoi), and the Johannes-
burg Colored are described in Jenkins ct al. (1971} and Harpending and
Jenkins (1972b). The Khoi from Kectmanshoop, Southwest Africa, and
the Colored from Kuboes are described in Jenkins and Corfield (1972).

The 18 populations are shown in Iigure 30.

Since we are intercsted in the distance relations among these popula-
tions, we have treated them as if they had equal weight in the calculation
of the R matrix given in 'lablc 2g. If this were a study of population struc-

FIGURE 30. Location of populations in southern Africa.
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RELATIONSHIP MATRIX AMONG 18 SOUTHERN AFRICAN POPULATIONS (X 10%)
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CHAPTER Q

turc, attention would have to be given to the varying census sizes of thesc
aroups and to the biases in thesc rclationship statistics from the vaniability
in sample sizes. For our purposes here, those considerations arc not im-
portant, since the genetic distances do not depend (very much) on how
mean gene frequencies are defined, or on the niceties of biased versus
unbiased cstimates of R, Nevertheless, it is of some note that Fgr, or
Wahlund F, for all these groups considered together is only 0.06, which is
on the order of that found within singic tribes or small arcas among tropi-
cal gardeners (Friedlaender 1g71a), and that Fer calculated by weighting
groups by ccnsus size would be cven smaller.

The cigenvalues of this matrix are plotted in descending order in Fig-
ure 31. Since the average allele has a scaled variance of .06, we may, as a
rule of thumb, consider a dimension corresponding to an eigenvalue
greater than this to be significant. There are only five such cigenvalues, but
the first two or three secm clearly larger than the others. Most of the varia-
tion will be described by the first two or three axes, but it will be worth-

FIGURE 31. Eigenvalues of R.
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while to examine the others to see if any one group or cluster of groups
is being differentiated by this axis.

The 18 groups are plotted on dimensions corresponding to the first two
eigenvectors in Figure 32, and the alleles used arc plotted on the first two
eigenvectors of the S matrix in Figure 33. The first four eigenvectors of
R are given in 'T'able 30, along with the corresponding eigenvalues.

RELATIONS AMONG POPULATIONS

The first axis in Figure 3z is clearly differentiating Bantu-speaking and
Khoisan-speaking peoples. It is worthy of note that the extreme Khoisan
population, the /Du/da !Kung, is the 'Kung population most isolated

L]
FIGURE 32. Populations plotted on first two scaled eigenvectors.
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FIGURE 33. Plot of alleles on first two eigenvectors of § (eigenvectars not scaled).

from contact with Tswana and Herero Bantu-speakers. The Mozambique
Bantu sample is at the other extreme of the first axis, confirming the low
Khoisan admixture into this samplc deduced by Jenkins, Zoutendyk, and
Steinberg (1970). The ordering of the other Bantu groups on this axis
also conforms to the admixture estimates in that publication.

The second axis in Figure 32 is just as clearly revealing non-African
admixture, The Johannesburg Colored population is highest on this di-
mension, followed by that of Kuboes, also from South Africa, the Khoi
from Keetmanshoop in sonthern Southwest Africa, and last by the popu-
lations at Sesfontein in the extreme northwest part of Southwest Africa,
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TABLE 30
EIGENVECTORS OF KINSHIP MATRIX

Eigenvectors
Population 1, 2 3 4
1. Dobe 1Kung 0.31 —0.15 —0.03 0.06
2. /Ai/ai IKung 0.32 -0.23 —0.13 0.00
3. /Du/da IKung 0.42 —0.26 0.00 0.22
4. Ghanzi !Kung 0.32 —0.05 0.01 0.0%
5. Naron 0.25 —0.12 —0.06 —0.0%
6. Sesfontein Khoi —0.03 0.08 0.41 c.0b
7. Keetmanshoop Khoi 0.00 0.23 0.26 ~0.47
8. Damara —0.31 —0.10 0.37 0.42
9. Herero —0.19 —0.15 —0.10 —0,10
10, Tswana —0.14 —0.07 —0.09 —0.09
11, Sothol —0.14 —a.06 —0.09 —0.05
12. Sotho TI —0.16 —o0.cb —o.1z —0.18
13. Swazi —0.21 —0.09 ~0.17 —0.07
14. Pedi —G.22 —0.01 —0.20 —0.1g
15. Sesfontein Colored —c.17 0.03 0.39 0.36
16. Johannesburg Colored 0.04 0.6% —0.49 0.46
17. Kuboes Colored 0.15 0.52 0.2§ —0.33
13. Mozambique Bantu —0.33 —0.16 -0.20 —o.az
Eigenvalue 0.41 0.22 0.13 0.08
Cumulative percent
of total kinship 38 58 70 78

furthest from areas of dense European settlement, The samples from
Sesfontein and Keetmanshoop labeled Khoi were chosen as people who
claimed four Khoi grandparents. In general, this analysis shows that such
individuals are not significantly “purer” Khoi and that, indeed, the Khoi
and Colored groups are not genetically distinguishable. This point is
reinforced by the location in Figure 32 of the Naron, who are hunter-
gatherers of the central Kalahari Desert around Ghanzi, Botswana, and
who speak a language mutually intelligible with Nama; in other words,
they are linguistically Khoi. The results of this analysis suggest that there
are no significant differences between the San and Khoi (or “Bushman”
and “Hottentot”) peoples of South Africa and that some of the ascribed
differences are the results of admixture, a different way of life with a dif-
ferent diet, and so forth. The populations in southwest Africa who call
t.hF.'mse]ves Khoi seem fully genetically allied with the Colored popula-
tions around them. However, these findings are subject to different possi-
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FIGURE 34. Populations plotted on second and third scaled eigenvectors.

ble interpretations, especially when the third dimension is considered.
Figure 34 shows these populations arrayed on axes 2 and 3. When looking
at this, it should be kept in mind that the San and Khoi-Colored are
separated on axis 1 from the Bantu and that the Damara are good Bantu
on the first axis.

The San (including the Naron) and the Bantu groups are indifferent
on the third axis; on it, the Johannesburg Colored population is alone at
one extreme, while the rest of the Damara-Khoi-Colored complex occupies
the other. This might be taken to indicate that the composition of the
Johannesburg population is basically different from that of the other
Colored groups in southern Africa, possibly reflecting Malay admixture.
On this axis, the Damara arc in the midst of the Khoi-Colored complex,
while on the first two axes, they are clearly Bantu. This confirms their
puzzling status among these populations and indicates that an extension
of this analysis to include populations from the rest of the continent
would e uscful. See Jenkins ct al. (1971) for a discussion of the Damara.
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The contribution of the alleles studied to the variation along each
of the axes is shown graphically in Figure 33. Such a presentation imme-
diately identifies alleles highly associated with San to be Gm 2%, Fys, Tf?,
Hp?, and PGM,*, and alleles indicative of extra-African admixture to be
Gm®513.1% Gml.2 Ry, Tf% and so forth. This kind of representation
seems to us very useful for studies of genctic distance among heteroge-
neous groups, since allelic variation is comprehcensible at a glance. A collec-
tion of plots such as this from various areas might provide the simplest
way to scan for associations among alleles consistent over different areas.

NOTE

1. Present address: Department of Anthropology, University of New Mexico.
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